RBRC Workshop: Physics Opportunities from the RHIC Isobar Run Jan. 26th, 2022

Measuring neutron-skin thickness with forward/backward rapidity neutrons in ultracentral relativistic isobaric collisions

Jun Xu (徐骏)

Shanghai Advanced Research Institute (SARI), CAS

Content

1. Background

isobaric collisions neutron-skin thickness nuclear symmetry energy

- 2. Model setups
- 3. Results and discussions
- 4. Summary and outlook

CME and isobaric collisions

$$\gamma_{\alpha\beta} = \langle \cos\left(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{2}\right) \rangle$$

S. A. Voloshin, PRC (2004)

Significant background contribution

Isobaric collisions: similar bulk dynamics, different B

STAR, arXiv: 2109.00131 [nucl-ex]

J. Zhao and F. Q. Wang, PPNP (2019)

Isobaric collisions to probe neutron skin

Charged-particle multiplicity

H. L. Li et al., PRL (2020)

probe the density distribution of colliding nuclei probe the density distribution of colliding nuclei

Observables at midrapidities suffer from complicated dynamics and model dependence

Net-charge multiplicity

Average transverse momentum

 $V_2^2\{2\}$

Intermediate-energy HIC to probe neutron skin

G. F. Wei et al., PRC (2014)

Z. T. Dai et al., PRC (2015)

Z. T. Dai et al., PRC (2014)

Suffer from:

- 1) Model dependence
- 2) Interaction between spectator and participant
- 3) Uncertainties of clusterization/fragmentation

Neutron skin and E_{sym}

Neutron-Skin Thickness: $\Delta r_{\rm np} = \sqrt{\langle r_n^2 \rangle} - \sqrt{\langle r_p^2 \rangle} \quad (fm)$

Expansion around saturation density ρ_0

$$E_{sym}(\rho) = E_{sym}(\rho_0) + L\chi + \chi = \frac{\chi}{3\rho_0}$$

Slope parameter
$$L = 3\rho_0 \left[\frac{\partial E_{sym}(\rho)}{\partial \rho} \right]_{\rho = \rho_0}$$

Energy per nucleon

in asymmetric matter

$$E(\rho, \delta) \approx E_0(\rho) + E_{sym}(\rho) \delta^2$$

Energy per nucleon

$\rho = \rho_n + \rho_p$

$$\delta {=} (\rho_n \text{-} \rho_p)/\rho$$

PREXII data of ²⁰⁸Pb favors a large L

B. T. Reed et al., PRL (2021)

Symmetry energy

Bayesian inference of E_{sym} from Δr_{np} of Sn

(e)

120

100

60

L (MeV)

80

0.00

0

20

40

compared with Δr_{nn} of ²⁰⁸Pb by PREXII

JX, W. J. Xie, and B. A. Li, PRC (2020)

Various constraints on $E_{sym}(\rho_0)$ and $L(\rho_0)$

Composition: Hyperons, Deconfined Quarks Kaon/Pion Condensates

Model setup: initial density distribution

Skyrme-Hartree-Fock (SHF) model:

$$v(\vec{r}_{1}, \vec{r}_{2}) = t_{0}(1 + x_{0}P_{\sigma})\delta(\vec{r})$$

$$+ \frac{1}{2}t_{1}(1 + x_{1}P_{\sigma})[\vec{k}'^{2}\delta(\vec{r}) + \delta(\vec{r})\vec{k}^{2}]$$

$$+ t_{2}(1 + x_{2}P_{\sigma})\vec{k}' \cdot \delta(\vec{r})\vec{k}$$

$$+ \frac{1}{6}t_{3}(1 + x_{3}P_{\sigma})\rho^{\alpha}(\vec{R})\delta(\vec{r})$$

$$+ iW_{0}(\vec{\sigma}_{1} + \vec{\sigma}_{2})[\vec{k}' \times \delta(\vec{r})\vec{k}].$$

$$\mathsf{E} = \sum_{i} \left\langle i \left| \frac{p^2}{2m} \right| i \right\rangle + \frac{1}{2} \sum_{ij} \left\langle ij \right| \left| \tilde{v}_{12} \right| ij \right\rangle$$

$$\frac{\delta}{\delta\phi_i}\left(E-\sum_i e_i\int |\phi_i(\vec{\mathbf{r}})|^2 d^3r\right)=0$$

$$\left[-\vec{\nabla} \cdot \frac{\hbar^2}{2m_q^*(\vec{\mathbf{r}})} \vec{\nabla} + U_q(\vec{\mathbf{r}}) + \vec{W}_q(\vec{\mathbf{r}}) \cdot (-i)(\vec{\nabla} \times \vec{\sigma}) \right] \phi_i = e_i \phi_i$$

$$\rho_q(\vec{\mathbf{r}}) = \sum_i |\phi_i(\vec{\mathbf{r}}, \sigma, q)|^2$$

Possible deformation effect

$$\rho'(r,\theta) = [1 + \alpha_2 Y_{20}(\theta) + \alpha_3 Y_{30}(\theta))]\rho(r)$$
$$(\alpha_2,\alpha_3) \Leftrightarrow (\beta_2,\beta_3)$$

Quantity	MSL0	Quantity	MSL0
$t_0 (\text{MeV fm}^5)$	-2118.06	$\rho_0 ({\rm fm}^{-3})$	0.16
$t_1 (\text{MeV fm}^5)$	395.196	E_0 (MeV)	-16.0
$t_2 (\text{MeV fm}^5)$	-63.9531	K_0 (MeV)	230.0
t_3 (MeV fm ^{3+3σ})	128 57.7	$m_{s,0}^*/m$	0.80
x_0	-0.0709496	$m_{v,0}^{*}/m$	0.70
x_1	$-0.332\ 282$	$E_{\text{sym}}(\rho_0) (\text{MeV})$	30.0
x_2	1.358 30	L (MeV)	60.0
x_3	$-0.228\ 181$	G_S (MeV fm ⁵)	132.0
σ	0.235 879	G_V (MeV fm ⁵)	5.0
W_0 (MeV fm ⁵)	133.3	$G_0'(ho_0)$	0.42

L. W. Chen et al., PRC (2010)

Model setup: Glauber model

Schematic Monte-Carlo Glauber model

$$\sigma_{NN} = 42 \text{ mb } @200 \text{GeV}$$

$$N_{\text{trk}}^{\text{Glauber}} = n_{pp} \left[(1 - x) N_{\text{part}} / 2 + x N_{\text{coll}} \right]$$

$$P_{\text{NBD}}(n_{pp}, k; n) = \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} \cdot \frac{(n_{pp}/k)^n}{(1+n_{pp}/k)^{n+k}}$$

Fit $P(N_{ch})$ from preliminary STAR data

Observables as a function of impact parameter

Comparable to experimental data

Observables as a function of charged-particle multiplicity N_{ch}

STAR, arXiv: 2109.00131 [nucl-ex]

Model setup: clusterization and deexcitation

Dynamics of participant matter is neglected!

A. Clusterization with coalescence parameter

 $\Delta r < 3$ fm (empirical nucleon interaction range) $\Delta p < 300 \text{ MeV/c}$ (empirical Fermi momentum at ρ_0)

B. Cluster deexcitation with GEMINI

1. Excitation energy

 $E = \frac{1}{N_{TP}} \sum \left(\sqrt{m^2 + p_i^2} - m \right)$

(test-particle method for parallel events with similar collision configuration)

Simplified SHF EDF
$$+ \int d^3r \left[\frac{a}{2} \left(\frac{\rho}{\rho_0} \right)^2 + \frac{b}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^{\sigma + 1} \right] + \int d^3r \left\{ \frac{G_S}{2} (\nabla \rho)^2 - \frac{G_V}{2} [\nabla (\rho_n - \rho_p)]^2 \right\}$$

$$+ \int d^3r E_{sym}^{pot} \left(\frac{\rho}{\rho_0} \right)^{\gamma} \frac{(\rho_n - \rho_p)^2}{\rho} + \frac{e^2}{2} \int d^3r d^3r' \frac{\rho_p(\vec{r})\rho_p(\vec{r}')}{|\vec{r} - \vec{r}'|} - \frac{3e^2}{4} \int d^3r \left[\frac{3\rho_p}{\pi} \right]^{4/3} - \mathsf{E}_{\mathsf{GS}}$$

2. Angular momentum

$$\vec{L} = \sum_{\cdot} \vec{r_i} \times \vec{p}_i$$

A and B are two sources of free nucleons

Results and discussions

- More neutron-rich spectator matter in more neutron-rich system
- ullet More neutron-rich spectator matter in more central collisions (large N_{ch})
- More neutron-rich spectator matter with a larger L or thicker neutron-skin thickness Δr_{np}

Results and discussions

- Taking ratios largely cancels theoretical/experimental uncertainties
- Deformation effect seems to be small

Results and discussions

Yield ratio of forward/backward rapidity neutrons over protons could be more sensitive to L

Summary and outlook

- Forward/backward rapidity nucleons: clean probes
- Ultracentral HIC: free from deexcitations
- Ratio of neutron-rich to neutron-poor system: reduce uncertainties
- Extension: yield ratio of neutrons/protons, at RHIC or LHC

Acknowledgement

Stony Brook University: Jiangyong Jia, Chunjian Zhang

University of CAS: <u>Lu-Meng Liu</u>, Guang-Xiong Peng

SINAP: Jia Zhou

Thank you! xujun@zjlab.org.cn

